OxeBots SSL-EL 2024 Team Description Paper

Ana Livia Santos, Carlos Cerqueira, Davi Azevedo, Eduardo Silva, Erick Suzart, Fabio Miguel

Mascarenhas, Felipe Trebino, Greice Kelly, Hanna Andraus, Iarla Queiroz, Jodo Nunes, Larrissa

Leanor, Mércio Santos, Matheus Aragido, Matheus Batista, Pedro Braga, Rodrigo Freitas, Ruan
Oliveira, Sarah Cerqueira, Samuel Guimaraes, Wildson dos Santos, Luciano Reboucas

Abstract—The SSL Entry League (SSL-EL) is an entry-level
competition where teams compete with three autonomous robots
each. In this Team Description Paper, we present the project
developed by the Oxebots from IvisionLab at UFBA.

Our system is structured into three main modules: the strategy
module, which is responsible for determining the optimal path
and predictions for the robots; the electronics module, which
handles the firmware and electronic components; and the me-
chanical module, which focuses on the physical construction of
the robots.

Index Terms—RoboCup Brazil, Wireless Control, ROS.

I. OVERVIEW

The SSL Entry League is a robot soccer competition that
brings together university students from various institutions,
fostering a community where participants can share knowledge
and learn from each other about different aspects of robotics.
With a goal of gaining more experience in this field, so
as to bring the competition closer to our university, the
Oxebots team was formed in the Universidade Federal da
Bahia (UFBA).

At the match, one’s software must be able to receive
information from the vision system and referee and, with this
data, be able to make strategic decisions that will be sent
to the robots in the field, as no user input is allowed in the
tournament, all this process must happen totally autonomously.
For the first participation in the competition, we decided
to divide the Oxebots project into three teams, the strategy
team, responsible for the development of the software that
will determine the optimal path and prediction for the robots,
the electronics team, focused in developing the firmware
that serves as the brain of the robots. They ensure seamless
communication between the strategy module and the robot’s
hardware, lastly the mechanical team, who develop the robot’s
external components. They design and create its parts, such as
the wheels and the kicking system, making sure to meet the
desired requirements.

The current paper is divided into four parts, there is one
part for each of the current team, making a summary of it’s
development, and a conclusion where we talk about possible
future developments of the project.

II. STRATEGY

The strategy module is tasked with devising the most
efficient routes and maneuvers for the robots on the field. This
module processes input from the vision system and referee,
ensuring that the robots can execute the required actions
quickly and efficiently. Performance is crucial, as it dictates the

Simulator

Frame Vision
(Protobuf) Interface Objects

Position

Vision Software
(SSL_Vision)

Referee
Interface

Referee
(Game controller)

Game State

Robot
communication
(Driver)

Command
Interface

Strategy
(Decision Tree)

Simulator
(grSim)

Fig. 1. Architecture of the strategy model.

robot’s ability to respond promptly and effectively. To achieve
high performance while maintaining a reasonable development
speed, we chose to use the Robot Operating System (ROS) [7],
version 2, a well-established framework in the robotics field.
The architecture of our team is illustrated in Figure 1. As
shown in the image, we can divide the software into layers,
each one relying on the previous one to behave properly.
The Bridges layer is responsible for the communication
with external software, as well as handling all the errors that
might occur in the process communicating, the observers are
responsible for joining together all the information that we
gathered from the vision and referee module, and the core
module is the one responsible for creating the strategy per se.

A. Bridges

The interfaces layer (Vision, Referee and Command inter-
faces) is responsible for applying the necessary transforma-
tions into the data being received or exported. Currently, we
receive and send all the data via the UDP protocol [13] using
Protobuf [14], after the data is processed, it’s transformed into
ROS messages, actions and services.

1) Vision Interface: The vision interface is the module
responsible for obtaining data from the simulator [15] or vision
software [12]. We developed this module with the intent of
being able to use the simulator or the cameras interchangeably,
making the process of development and testing easier. After
the data is received from the font, it’s treated and sent to the
observers where it will be processed.

2) Referee Interface: To get the information on the state of
the game, we use the referee interface as a bridge between the
Game Controller [1] and our strategy module.

3) Command Interface: After the data is processed, it must
be sent to the communication module, where it will be sent
to the robots via radio interface. As such, this module makes
the inverse process the other two interfaces made, transforming
from ROS messages into UDP packages, that will use Protobuf
to communicate with the communication module.

B. Observers

The observer layer is responsible for joining together all the
information received by the bridge layer and processing it, so
the core layer can use it to make the best decision for the
moment of the game. Currently, we only use a single observer
module, the Game observer.

After collecting the data from the referee interface and
simulator or camera software from the vision interface, we
process it on the Game Observer module. Here, we also apply
the Kalman Filter.

A Kalman Filter [11] is an processes a series of measure-
ments observed over time, accounting for statistical noise and
other inaccuracies. By estimating a joint probability distribu-
tion over the variables for each timeframe, the Kalman Filter
produces more accurate estimates of unknown variables than
those based on single measurements alone. In our context, we
use the Kalman Filter to predict the positions of opposing
players and obtain tracking information. This allows us to
make more informed decisions for our team.

C. Core

After all the data has been prepared, it’s sent to the core
module, where it will be used to analyze the current context of
the game and react accordingly. Currently, we use a behaviour
tree strategy and keep a fixed robot as the keeper while the
other two robots in field can switch between forward and
backward.

1) Keeper: The keeper is the player that must defend the
goal from enemy attacks while still being able to make the
strategy for the offensive. For this, we decided to keep a fixed
keeper that will change its behavior depending on the moment
of the game.

2) Backward and Forward: For the other two members of
the team, the position may change dynamically depending on
the current situation of the field. We decided to share the same
behavior tree for both of them, and as so, they are able to
change their position seamlessly. And so, the forward is the
player in the offensive side of the game, while the backward

—
_E}EN — 023]

®
036 0228
oz

@o3s D21

N V3@
® 58] | 5
ol o
we | B

Fig. 2. Prototype of the connection between the drivers and the ESP32.

one is responsible for helping defend the goal and make the
opposing team have some difficulty on their attack.

The robots change their function on the team by observing
the current moment of the game. For example, if a robot is
closer to the ball, it will assume a forward behavior, as we
judge it to be the best behavior for the current moment. But,
if the same robot sees that its teammate is closer to the ball
and the situation is appropriate, it can assume a more defensive
position.

III. ELECTRONICS

Currently, we are working on a Arduino Mega [8] based
system. The RISC-based board from Arduino was chosen for
its practicality and ease of use [9]. As it’s the first year of the
team, the huge amount of material and the great amount of
IO ports made it the right choice for this kind of project. The
PlatformIO framework [10] provides us a great advantage on
the programming of the embedded code and makes it easy to
implement good practices like CI/CD workflow and libraries
like freeRTOS, making the process of working with real-time
easier.

Earlier in the project development, there was also an attempt
to use a the ESP-32 [6]. The Espressif board uses an ARM
architecture and has the main advantage over the Arduino
Mega being its price and size, as it’s significantly cheaper
and smaller than the Arduino counterpart. However, the lack
of GPIO made it hard to work with the selected motors.

A. Motors

We have selected brushless DC electric motors (BLDC)
for our robot components due to their availability, high pre-
cision, and efficiency, making them an ideal choice for this
project. These motors require a specialized driver that utilizes
a generator to operate effectively. For the control system,
we are using the MPU-6050, a combined gyroscope and
accelerometer, which provides accurate orientation and motion
sensing. This sensor is crucial for maintaining stability and
precise movement control in our robot.

voltage transformer Microcontroler

y

MPU6050

NRF24101

Drivers/Encoder
Automation/
Control
- A N
. .

Fig. 3. Diagram of the electronics components.

Radio
Comunication

B. Communication

For the communication, we decided to use radio frequency
with the nRF24L.01 module. With such, we use a SPI (Serial
Peripheral Interface) to communicate with the microcontroller
and the nRF24L01. For the setup, we went a single way of
communication, i.e, only the computer via a “base station”,
another ESP-32 with a nRF24L.01 with a medium range
antenna, sends information to the robots, while the latter are
only able to receive information and not reply.

As such, the strategy module sends the information module
via serial communication to the “base station” that will then
send the data to the microcontroller. In each robot, then, the
NRF24L01 will then decode the message and do the necessary
actions, as shown in Figure 4.

C. Firmware

For the development of the firmware, we decided to
use PlatformlO. This framework is a cross-platform, cross-
architecture, multiple framework, professional tool used for
professional development of embedded systems. As it inte-
grates greatly with modern IDEs like VSCode and makes the
process of change of components easier, it was a great choice
for the current moment of the team.

IV. MECHANICS

Mechanical design includes modeling of components and
appropriate selection of motors. The modeling is carried out
using CAD software, which allows the creation of digital
prototypes of the components. This makes it easy to visualize
and adjust designs before physical production and prototype
development, and enables the use of 3D printing as a way to
materialize some parts of the robot in any desired manner. We
chose to model all components on Fusion360 for this task, as
it was the most fit for our members.

The selection of motors along with the electronic design is
crucial to ensure that the robot has the power and precision

Command

Interface

Protobuf

Robot

Communication
(Driver)

UART

Base Station

Radio

Fig. 4. Radio Communication between the base station and a robot.

required for its functions, for instance, movement. The deci-
sion is made based on requirements such as torque, speed and
efficiency, taking into account the weight and load distribution
of the robot.

For enhanced mobility, we paired those components to
omnidirectional wheels, since they allow smooth maneuvering
in any direction. To interact with the ball and the field, a
solenoid-based kicking system was developed, enabling the
robot to kick and accurately throw the ball after determining
its timing.

A. 3d printing

3D printing is an important tool for the adequacy and
cheapness of the project. PLA filament was used due to
several advantages compared to other filaments, such as the
ABS filament which requires greater printing complexity and
higher costs. PLA is a user-friendly material and offers good
print quality, with excellent dimensional accuracy and surface
finish. The mechanical strength is adequate for many structural
components, ensuring durability and efficient performance in
robot applications.

B. Omnidirectional Wheels

Omnidirectional wheels are crucial components for the
robot’s mobility. These wheels allow the robot to move in any
direction without the need to rotate. Each wheel is made up of
several parts arranged at an angle, allowing lateral, diagonal,
and rotational movements. This design significantly improves

the robot’s maneuverability compared to other layouts. The
wheels have been CAD modeled and 3D printed using PLA,
ensuring that they meet design specifications so we can test
out its resistance afterward.

Fig. 5. Design for the wheel.

C. Solenoid based Kicking system

As for the robot’s ability to shoot the ball, a kicking
mechanism with two solenoids was developed so the system
could adjust the angle of the shot. The idea is to use a driver
system to activate each solenoid individually or simultane-
ously, allowing the front paddle to be angled and pushed in
the desired direction. This provides a more precise method for
kicking the ball according to its needs, hence enhancing the
performance of the robot on the field. We have modeled the
whole system in 3D, in order to have a general idea of its size
and capabilities, and we need to perform circuit calculations
to ensure we produce the correct voltage for the solenoids.

V. CONCLUSION

In this TDP, we described the progress made in our first
year of development on the Oxebots team to participate in the
SSL-EL.

As it’s still the first year participating in the competition,
there is still a lot of room for improvement in all the areas of
the project. For future work, we aim to get better performance
in the software development, being able to make the robots
send information to the strategy module and use Al methods
in the strategy module.

ACKNOWLEDGMENT

We would like to thank Prof. Luciano Oliveira, head of
Ivisionlab, for providing us the space, technical advisory and
necessary resources for developing this project.

REFERENCES

[1] Game Controller, https://github.com/RoboCup-SSL/ssl-game-controller,
last accessed 2024/07/17

[2] Ros Homepage, https://www.ros.org/, last accessed 2024/07/08

[3] Behavior Tree, https://en.wikipedia.org/wiki/Behavior_tree_(artificial _
intelligence, _robotics_and_control), last accessed 2024/07/08

[4] Lacey, Tony. "Chapter 11 Tutorial: The Kalman Filter”

[5] Becker, Alex. ”Kalman Filter from the ground up”

[6] Esp-32 datasheet, https://www.espressif.com/sites/default/files/
documentation/esp32_datasheet_en.pdf, last accessed 2024/07/09

[7] FreeRTOS documenatation, https://www.freertos.org/
FreeRTOS-quick-start-guide.html, last accessed 2024/07/09

[8] Arduino Mega datasheet, https://docs.arduino.cc/resources/datasheets/
A000067-datasheet.pdf, last accessed 2024/07/17

[9] ATmega2560 datasheet, https://ww1.microchip.com/downloads/
aemDocuments/documents/OTH/ProductDocuments/DataSheets/
ATmega640-1280-1281-2560-2561-Datasheet-DS40002211A..pdf,
last accessed 2024/07/17

[10] PlatformIO framework, https://platformio.org/, last accessed 2024/07/15

[11] Kalman Filter, https://en.wikipedia.org/wiki/Kalman_filter, last accessed
2024/07/22

[12] Samp_Dist_Corr, https:/github.com/RoboCup-SSL/ssl-vision, last
accessed 2024/07/10

[13] What is the User Datagram Protocol (UDP/IP)?, https://www.cloudflare.
com/learning/ddos/glossary/user-datagram-protocol-udp/, last accessed
2024/20/08

[14] Protocol Buffers, https://protobuf.dev/, last accessed 2024/20/08

[15] GrSim, https://github.com/RoboCup-SSL/grSim, last accessed
2024/20/08

